

Statistical reports have been updated to a new organizational format. Statistical analysis remains the same and there are the same number of reports for each sample in a round.

This file contains the Method Summary Statistics Report and the Method All Tests Report. Information on the content of the reports are included as appendices to each report.

Magruder Fertilizer Proficiency Testing METHOD

Summary Statistics

Issue Date: 10/31/2025

			Tru	eness (Lab	Value)				Precision (range)
Code	Analyte / Method	Robust Mean	# Obs	Robust StDev	Robust Uncert.	Robust %RSD	Horwitz %RSD	IA ratio	Robust Mean	# Obs
005.99	Urea N, Other (%)	45.62	7	1.328	0.6276	2.91	1.48		0.1425	7
008.10	Biuret, Spectrophotometric (as Biuret) (%)	0.9896	5	0.1623	0.0907	16.4	4		0.0224	4
008.99	Biuret, Other (%)	0.9484	4	0.1402	0.0876	14.8	4.02		0.0843	4
010.12	Total N, Salicylic (46%)	45.98	3	0.1922	0.1387	0.42	1.47	0.51	0.13	3
010.60	Total N, Combustion (46%)	46.41	48	0.389	0.0702	0.84	1.47	1.03	0.213	43
010.99	Total N, Other (46%)	46.12	13	0.1915	0.0664	0.42	1.47	0.51	0.1472	13

Statistical parameters of the population: Robust statistics was used if number of observations >=6 for estimate of trueness (blue background) and precision (green background). Classical statistics was used if number of observations = 3, 4, or 5 (no color background).

Horwitz %RSD and IA ratio: These values are benchmarks that can be used to evaluate the variability of a population of data in the round. Horwitz %RSD is a standard benchmark on variability from proficiency testing programs. IA ratio is population variability divided by variability expected from AAPFCO investigational allowance. IA ratios greater than 1 indicate population variability is greater than that expected from the IA.

Appendix

Content Description of Analyte and Method Summary Statistics Report

Data collected from all the labs provides an estimate of trueness and precision for determination of an analyte regardless of method (Analyte Summary Statistics) or for determination of analyte by specific methods (Method Summary Statistics). Determination of summary statistics followed protocols in ISO 13528:2015(E) (Statistical methods for use in proficiency testing by interlaboratory comparison). Robust statistics was used to determine statistical parameters for sets with 6 or more observations. Classical statistics was used for sets with 3, 4, or 5 observations. Robust statistics has an advantage of removing undesired influence outlying data can have on the mean and standard deviation without removing data from the statistical analysis.

For trueness, the mean and standard deviation are presented for the number of observations in the population. The uncertainty is a measure of where the "real" value for the concentration lies around the mean with a 68% certainty. The larger the number of observations, the smaller the uncertainty. The relative standard deviation (%RSD) is a percentage of the standard deviation divided by the mean. The Horwitz %RSD is a standard benchmark on variability developed by Horwitz (https://www.rsc.org/images/horwitz-function-technical-brief-17_tcm18-214859.pdf) that can be used to compare program results with Horwitz expectation. The IA ratio is a measure of how disperse the data is in a population compared to dispersion expected by the AAPFCO investigational allowance (IA). The ratio is the data dispersion in the population divided by IA expected data dispersion. Values greater than 1 indicate data dispersion was greater than IA expected dispersion.

Precision in the data populations is estimated by the range of duplicate results reported. The robust or classical mean is presented along with the number of observations. Any duplicate results that are exactly the same are removed in the determination of the mean to remove undo influence of entries from labs reporting one result twice.

Magruder Fertilizer Proficiency Testing

METHOD All Tests Report

250911 (Urea, Regular Scheme)

Issue Date: 10/31/2025

							Popu	lation of La	ab Valu	es
Code	Analyte and Method	Lab Num	Result1	Result2	Lab Value	Z score	Robust Mean	Robust StDev	# Obs	Flag
		Ammoniacal	N, Othe	r (%)			=			
001.99	Ammoniacal N, Other (%)	524	0.6073	0.8297	0.7185					
		Urea N, Urea	se (as N	(%)			=			
005.00	Urea N, Urease (as N) (%)	389	44	44.05	44.02					
005.00	Urea N, Urease (as N) (%)	368	46.237	46.179	46.21					
		Urea N, (Other (%)				=			
005.99	Urea N, Other (%)	524	39.9809	40.053	40.02	-3.81	45.62	1.328	7	
005.99	Urea N, Other (%)	29	44.34	44.37	44.36	-0.86	45.62	1.328	7	
005.99	Urea N, Other (%)	476	45.915	45.8878	45.9	0.19	45.62	1.328	7	
005.99	Urea N, Other (%)	584	46.24	45.68	45.96	0.23	45.62	1.328	7	
005.99	Urea N, Other (%)	602	46.16	46.25	46.2	0.40	45.62	1.328	7	
005.99	Urea N, Other (%)	605	46.61	46.34	46.48	0.58	45.62	1.328	7	
005.99	Urea N, Other (%)	309	46.72	46.87	46.8	0.80	45.62	1.328	7	

Issue D	ate: 10/31/2025	All Labs Trueness by	All Labs Trueness by Method					250911 (Urea, Regular Scher					
							Popu	lation of L	ab Valu	es			
Code	Analyte and Method	Lab Num	Result1	Result2	Lab Value	Z score	Robust Mean	Robust StDev	# Obs	Flag			
		Biuret N, (Other (%	5)									
006.99	Biuret N, Other (%)	558	0.75	0.76	0.755								
006.99	Biuret N, Other (%)	534	1	1	1								
		Urea, HPLC, H2O r	nobile p	hase (%)								
007.10	Urea, HPLC, H2O mobile phase (%)	394	46.135	46.195	46.16								
		Urea, Ot	her (%)				=						
007.99	Urea, Other (%)	602	46.16	46.25	46.2								
007.99	Urea, Other (%)	536	46.15	46.28	46.22								
		Biuret, AA (as	Biuret)	(%)									
008.00	Biuret, AA (as Biuret) (%)	498	0.79	0.79	0.79								
		Biuret, Spectrophotor	netric (a	s Biuret	:) (%)								
008.10	Biuret, Spectrophotometric (as Biuret	(%) 572	0.86	0.85	0.855	-0.83	0.9896	0.1623	5				
008.10	Biuret, Spectrophotometric (as Biuret	(%) 405	0.89	0.89	0.89	-0.61	0.9896	0.1623	5				
008.10	Biuret, Spectrophotometric (as Biuret	(%) 510	0.9357	0.9697	0.9527	-0.23	0.9896	0.1623	5				
008.10	Biuret, Spectrophotometric (as Biuret	(%) 513	0.98	0.99	0.985	-0.03	0.9896	0.1623	5				
008.10	Biuret, Spectrophotometric (as Biuret	(%) 476	1.2828	1.2474	1.265	1.70	0.9896	0.1623	5				
		Biuret, O	ther (%)				=						
008.99	Biuret, Other (%)	394	0.8049	0.8422	0.8236	-0.89	0.9484	0.1402	4				
008.99	Biuret, Other (%)	220	0.81	0.91	0.86	-0.63	0.9484	0.1402	4				

Issue Da	ate: 10/31/2025	All Labs Trueness b	y Method			25	50911 (Ure	a, Regul	ar Sch	ieme)
							Popu	lation of La	ab Valu	es
Code	Analyte and Method	Lab Num	Result1	Result2	Lab Value	Z score	Robust Mean	Robust StDev	# Obs	Flag
008.99	Biuret, Other (%)	548	0.96	0.99	0.975	0.19	0.9484	0.1402	4	
008.99	Biuret, Other (%)	536	1.05	1.22	1.135	1.33	0.9484	0.1402	4	
-		Total N, Reduc	ed Iron ((46 %)			-			
010.10	Total N, Reduced Iron (%)	548	46.45	46.39	46.42					
		Total N, Modified Co	mprehe	nsive (4	6 %)		=			
		· · · · · · · · · · · · · · · · · · ·	•		•					
010.11	Total N, Modified Comprehensive (%)	510	46.0611	46.1983	46.13					
		Total N, Sali	cylic (46	%)						
010.12	Total N, Salicylic (%)	117	45.9	45.8	45.85	-0.70	45.98	0.1922	3	
010.12	Total N, Salicylic (%)	498	45.8	46	45.9	-0.44	45.98	0.1922	3	
010.12	Total N, Salicylic (%)	602	46.16	46.25	46.2	1.14	45.98	0.1922	3	
		Total N, Comb	ustion (4	46 %)						
010.60	Total N, Combustion (%)	360	43.35	42.67	43.01 †	-8.74	46.41	0.389	48	
010.60	Total N, Combustion (%)	35	45.1	45.2	45.15 †	-3.23	46.41	0.389	48	
010.60	Total N, Combustion (%)	292	45.43	45.45	45.44 †	-2.49	46.41	0.389	48	
010.60	Total N, Combustion (%)	389	45.93	45.62	45.78	-1.63	46.41	0.389	48	
010.60	Total N, Combustion (%)	612	45.61	46.14	45.88	-1.37	46.41	0.389	48	
010.60	Total N, Combustion (%)	234	45.79	46.06	45.92	-1.24	46.41	0.389	48	
010.60	Total N, Combustion (%)	423	45.99	46.09	46.04	-0.95	46.41	0.389	48	
010.60	Total N, Combustion (%)	561	46.04	46.07	46.06	-0.91	46.41	0.389	48	

307

521

46.6

46.171

45.69

46.171

46.14

46.17

-0.68

-0.61

46.41

46.41

0.389

0.389

010.60

010.60

Total N, Combustion (%)

Total N, Combustion (%)

48

48

Code Analyte and Method Num Result1 Result2 Value Z score Mean Sti	389 48 389 48	Flag
010.60 Total N, Combustion (%) 405 46.17 46.19 46.18 -0.59 46.41 0.	389 48	
010.60 Total N, Combustion (%) 291 46.18 46.19 46.18 -0.57 46.41 0.	100 40	
010.60 Total N, Combustion (%) 422 46.14 46.25 46.2 -0.55 46.41 0.	389 48	
010.60 Total N, Combustion (%) 451 46.1 46.3 46.2 -0.54 46.41 0.	389 48	
010.60 Total N, Combustion (%) 368 46.237 46.179 46.21 -0.51 46.41 0.	389 48	
010.60 Total N, Combustion (%) 624 46.196 46.311 46.25 -0.40 46.41 0.	389 48	
010.60 Total N, Combustion (%) 34 46.11 46.4 46.26 -0.39 46.41 0.	389 48	
010.60 Total N, Combustion (%) 86 46.415 46.13 46.27 -0.35 46.41 0.	389 48	
010.60 Total N, Combustion (%) 169 46.26 46.3 46.28 -0.33 46.41 0.	389 48	
010.60 Total N, Combustion (%) 43 46.08 46.49 46.28 -0.32 46.41 0.	389 48	
010.60 Total N, Combustion (%) 231 46.3 46.3 46.3 -0.28 46.41 0.	389 48	
010.60 Total N, Combustion (%) 95 46.27 46.33 46.3 -0.28 46.41 0.	389 48	
010.60 Total N, Combustion (%) 572 46.31 46.31 46.31 -0.25 46.41 0.	389 48	
010.60 Total N, Combustion (%) 220 46.39 46.29 46.34 -0.18 46.41 0.	389 48	
010.60 Total N, Combustion (%) 136 46.65 46.07 46.36 -0.12 46.41 0.	389 48	
010.60 Total N, Combustion (%) 255 45.909 46.907 46.41 0.00 46.41 0.	389 48	
010.60 Total N, Combustion (%) 233 46.5 46.33 46.42 0.02 46.41 0.	389 48	
010.60 Total N, Combustion (%) 421 46.67 46.21 46.44 0.08 46.41 0.	389 48	
010.60 Total N, Combustion (%) 106 46.55 46.44 46.5 0.22 46.41 0.	389 48	
010.60 Total N, Combustion (%) 40 46.5 46.5 46.5 0.24 46.41 0.	389 48	
010.60 Total N, Combustion (%) 55 46.41 46.6 46.5 0.25 46.41 0.	389 48	
010.60 Total N, Combustion (%) 452 46.53 46.6 46.56 0.40 46.41 0.	389 48	
010.60 Total N, Combustion (%) 177 46.461 46.726 46.59 0.48 46.41 0.	389 48	
010.60 Total N, Combustion (%) 534 46.7 46.5 46.6 0.49 46.41 0.	389 48	
010.60 Total N, Combustion (%) 527 46.66 46.56 46.61 0.52 46.41 0.	389 48	

All Labs Trueness by M	/lethod
------------------------	---------

Issue Date: 10/31/2025

250911	(Urea,	Regular	Scheme)
--------	--------	---------	---------

							Population of Lab Values				
Code	Analyte and Method	Lab Num	Result1	Result2	Lab Value	Z score	Robust Mean	Robust StDev	# Obs	Flag	
010.60	Total N, Combustion (%)	377	46.72	46.57	46.64	0.61	46.41	0.389	48		
010.60	Total N, Combustion (%)	543	46.83	46.5	46.66	0.66	46.41	0.389	48		
010.60	Total N, Combustion (%)	29	46.81	46.59	46.7	0.75	46.41	0.389	48		
010.60	Total N, Combustion (%)	131	46.782	46.724	46.75	0.89	46.41	0.389	48		
010.60	Total N, Combustion (%)	49	47.15	46.39	46.77	0.93	46.41	0.389	48		
010.60	Total N, Combustion (%)	494	46.79	46.77	46.78	0.96	46.41	0.389	48		
010.60	Total N, Combustion (%)	324	46.7	47.1	46.9	1.26	46.41	0.389	48		
010.60	Total N, Combustion (%)	354	46.9	46.9	46.9	1.26	46.41	0.389	48		
010.60	Total N, Combustion (%)	27	46.92	46.98	46.95	1.39	46.41	0.389	48		
010.60	Total N, Combustion (%)	260	47.4	46.9	47.15	1.91	46.41	0.389	48		
010.60	Total N, Combustion (%)	23	47.192	47.267	47.23	2.11	46.41	0.389	48		
010.60	Total N, Combustion (%)	25	46.48	48.63	47.56 ‡	2.95	46.41	0.389	48	1	
010.60	Total N, Combustion (%)	542	47.59	47.58	47.58 ‡	3.02	46.41	0.389	48		
010.60	Total N, Combustion (%)	472	49.1	49.3	49.2 ‡	7.18	46.41	0.389	48		
		Total N, Ot	her (46 🤋	%)						=	
010.99	Total N, Other (%)	524	44.5898	44.9674	44.78 †	-7.00	46.12	0.1915	13		
010.99	Total N, Other (%)	577	45.82	45.9	45.86	-1.35	46.12	0.1915	13		
010.99	Total N, Other (%)	558	45.6	46.3	45.95	-0.88	46.12	0.1915	13		
010.99	Total N, Other (%)	538	45.9	46.1	46	-0.62	46.12	0.1915	13		
010.99	Total N, Other (%)	553	45.94	46.16	46.05	-0.36	46.12	0.1915	13		
010.99	Total N, Other (%)	600	46.1	46.2	46.15	0.16	46.12	0.1915	13		
010.99	Total N, Other (%)	551	46.16	46.17	46.16	0.24	46.12	0.1915	13		
010.99	Total N, Other (%)	602	46.16	46.25	46.2	0.45	46.12	0.1915	13		
010.99	Total N, Other (%)	371	46.35	46.1	46.22	0.55	46.12	0.1915	13		

	ate: 10/31/2025 All Labs True	All Labs Trueness by Method				250	911 (Ure	a, Regul	, Regular Scheme)			
							Popu	lation of La	ab Valu	es		
Code	Analyte and Method	Lab Num	Result1	Result2	Lab Value	Z score	Robust Mean	Robust StDev	# Obs	Flag		
010.99	Total N, Other (%)	559	46.23	46.22	46.22	0.55	46.12	0.1915	13			
010.99	Total N, Other (%)	513	46.28	46.2	46.24	0.63	46.12	0.1915	13			
010.99	Total N, Other (%)	394	46.184	46.299	46.24	0.64	46.12	0.1915	13			
010.99	Total N, Other (%)	545	46.99	46.9	46.94	4.31	46.12	0.1915	13			
	Tot	al P2O5	5, ICP (%)			_					
020.50	Total P2O5, ICP (%)	422	0.0007	0	0.0004					5		
020.50	Total P2O5, ICP (%)	524	0.0011	0.005	0.003							
020.50	Total P2O5, ICP (%)	472	0.06	0.09	0.075							
	Direct Available P2O5, Spe	ctroph	otometr	ic, Citra	te-EDTA	Ext. (%)	_					
041.21	Direct Available P2O5, Spectrophotometric, Citrate-EDTA Ext.	. 472	<0.1	<0.1	<0.1					6		
041.21	Direct Available P2O5, Spectrophotometric, Citrate-EDTA Ext.	. 354	0.011	0.011	0.011							
	Water Soluble P2	205, Sp	ectroph	otomet	ric (%)							
048.20	Water Soluble P2O5, Spectrophotometric (%)	472	<0.1	<0.1	<0.1					6		
	Soluble K2C), AA (C	Citrate-E	DTA) (%	5)							
050.32	Soluble K2O, AA (Citrate-EDTA) (%)	472	<0.1	<0.1	<0.1					6		
	Soluble K	20 10) (Ovala	ta) (%)								

	Soluble K2O, ICP (Oxalate) (%)										
050.50 So	oluble K2O, ICP (Oxalate) (%)	422	0.0858	0.036	0.0609						
Soluble K2O, ICP (Citrate-EDTA) (%)											
050.52 So	oluble K2O, ICP (Citrate-EDTA) (%)	354	0.015	0.016	0.0155						

Issue D	ate: 10/31/2025 All Labs	s Trueness by	Method			250911 (Urea, Regular S					
							Popu	lation of L	ab Value	es	
Code	Analyte and Method	Lab Num	Result1	Result2	Lab Value	Z score	Robust Mean	Robust StDev	# Obs	Flag	
	S	oluble K2O,	Other ((%)			=				
050.99	Soluble K2O, Other (%)	524	0.0101	0.0127	0.0114						
	Wate	r (Free), Vac	cuum O	ven (%)							
060.00	Water (Free), Vacuum Oven (%)	405	0.14	0.14	0.14	-0.67	0.2633	0.1841	3		
060.00	Water (Free), Vacuum Oven (%)	220	0.17	0.18	0.175	-0.48	0.2633	0.1841	3		
060.00	Water (Free), Vacuum Oven (%)	561	0.49	0.46	0.475	1.15	0.2633	0.1841	3		
	Wat	er (Free), Ka	arl Fisch	er (%)			=				
060.20	Water (Free), Karl Fischer (%)	498	0.135	0.129	0.132	-1.06	0.2758	0.1351	3		
060.20	Water (Free), Karl Fischer (%)	513	0.294	0.297	0.2955	0.15	0.2758	0.1351	3		
060.20	Water (Free), Karl Fischer (%)	234	0.4	0.4	0.4	0.92	0.2758	0.1351	3		
	Water (Free), AFPC No	. 2B (105°C d	oven fo	r 2 hours	s, 5g sar	nple) (%)					
060.30	Water (Free), AFPC No. 2B (105°C oven for 2 hours, 5g	sampl 394	0.132	0.131	0.1315						
	v	Vater (Free)	, Other	(%)							
060.99	Water (Free), Other (%)	136	0.2	0.2	0.2	-0.66	1.915	2.594	3		
060.99	Water (Free), Other (%)	510	0.5984	0.6936	0.646	-0.49	1.915	2.594	3		
060.99	Water (Free), Other (%)	572	5	4.8	4.9	1.15	1.915	2.594	3	1	
	Acid Soluble Ca,	ICP, test po	rtion in	organic	965.09 (%)					
101.30	Acid Soluble Ca, ICP, test portion inorganic 965.09 (%)	354	0.08	0.1	0.09	•					
101.30	Acid Soluble Ca, ICF, test polition morganic 303.03 (%)	334	0.08	0.1	0.09						

Issue D	e Date: 10/31/2025 All Labs Trueness by Method 250911 (Urea, Re								ar Sch	neme)
							Popu	lation of L	ab Valu	es
Code	Analyte and Method	Lab Num	Result1	Result2	Lab Value	Z score	Robust Mean	Robust StDev	# Obs	Flag
		Acid Soluble Ca,	ICP, 201	7.02 (%)			_			
101.33	Acid Soluble Ca, ICP, 2017.02 (%)	472	0.01	0.01	0.01					
	Acid Solu	ole Mg, ICP, test p	ortion in	organic	965.09	(%)	_			
121.30	Acid Soluble Mg, ICP, test portion inorganic	965.09 (%) 354	<0.01	0.02	<0.01					6
121.30	Acid Soluble Mg, ICP, test portion inorganic	965.09 (%) 371	0.12	0.1	0.11					
		Acid Soluble Mg,	ICP, 201	7.02 (%)						
121.33	Acid Soluble Mg, ICP, 2017.02 (%)	472	0.06	0.08	0.07					
		Acid Soluble N	/lg, Othe	r (%)						
121.99	Acid Soluble Mg, Other (%)	524	0.0002	0.0005	0.0004					
	Tot	al S, ICP, test port	ion as in	2017.02	2 (%)					
148.07	Total S, ICP, test portion as in 2017.02 (%)	472	0.03	0.03	0.03					
		Total S, C	ther (%)							
148.99	Total S, Other (%)	422	0	0.0157	0.0078					5
148.99	Total S, Other (%)	354	0.09	0.05	0.07					
		S - HNO3 solu	uble, ICP	(%)						
149.04	S - HNO3 soluble, ICP (%)	524	0.0004	0.0008	0.0006					

Issue Date: 10/31/2025			All Labs Trueness by Method					250911 (Urea, Regular Scheme)					
									Popu	lation of Lab Values			
Code	Analyte :	and Method		Lab Num	Result1	Result2	Lab Value	Z score	Robust Mean	Robust StDev	# Obs	Flag	
			Acid Sol	uble A	s, ICP (p	pm)							
151.30	Acid Soluble	As, ICP (ppm)		524	0.0008	0.0017	0.0012						
		Acid So	oluble B, IC	P, test	portion	in 982.	01 (%)						
165.30	Acid Soluble	B, ICP, test portion in 982.01 (%)		354	<0.01	<0.01	<0.01					6	
165.30	Acid Soluble	B, ICP, test portion in 982.01 (%)		371	0	0	0					5	
			Acid So	luble E	, Other	(%)							
165.99	Acid Soluble	B, Other (%)		472	<0.01	<0.01	<0.01					6	
			Acid Sol	uble C	d, ICP (p	pm)							
181.30	Acid Soluble	Cd, ICP (ppm)		524	0.0152	0.0399	0.0276						
			Acid Sol	luble C	r, ICP (p	pm)							
191.30	Acid Soluble	Cr, ICP (ppm)		524	0.3236	0.3536	0.3386						
			Acid Sol	uble C	o, ICP (p	pm)							
202.30	Acid Soluble	Co, ICP (ppm)		524	0.0373	0.1455	0.0914						
		Acid Solubl	e Cu, ICP, t	est po	rtion in	organic	965.09 ((%)					
221.30	Acid Soluble	Cu, ICP, test portion inorganic 965	5.09 (%)	354	<0.01	<0.01	<0.01					6	
221.30	Acid Soluble	Cu, ICP, test portion inorganic 965	5.09 (%)	371	0	0	0					5	

ate: 10/31/2025	All Labs Tru	All Labs Trueness by Method						250911 (Urea, Regular Scheme)					
Analyte and Method		Lab Num	Result1	Result2	Lab Value	Z score	Popu Robust Mean	lation of La Robust StDev	ab Valu # Obs	es Flag			
	Acid Solu	ble Cu, I	CP, 2017	7.02 (%)									
Acid Soluble Cu, ICP, 2017.02 (%)		472	<0.01	<0.01	<0.01					6			
Acie	d Soluble Fe, ICP,	test po	rtion in	organic	965.09 (%)	=						
•		354 371	<0.01	<0.01	<0.01 0.01					6			
				7.02 (%)									
Acid Soluble Fe, ICP, 2017.02 (%)		472	<0.01	<0.01	<0.01					6			
	Acid S	oluble F	e, Othe	r (%)									
Acid Soluble Fe, Other (%)		524	0.0003	0.0007	0.0005								
	Acid S	oluble P	b, ICP (p	pm)			=						
Acid Soluble Pb, ICP (ppm)		524	0.2392	0.3058	0.2725								
	Acid Soluble Mn	, ICP, te	st portio	on 972.0	2a (%)								
Acid Soluble Mn, ICP, test portion 9	72.02a (%)	354	<0.01	<0.01	<0.01					6			
Acid	l Soluble Mn, ICP	, test po	ortion in	organic	965.09	(%)							
Acid Soluble Mn, ICP, test portion in	norganic 965.09 (%)	371	0	0	0					5			
	Acid Soluk	ole Mn, I	ICP, 201	7.02 (%)			=						
Acid Soluble Mn, ICP, 2017.02 (%)		472	<0.01	<0.01	<0.01					6			
								Pa	ge 10	of 13			
	Acid Soluble Cu, ICP, 2017.02 (%) Acid Soluble Fe, ICP, test portion in Acid Soluble Fe, ICP, test portion in Acid Soluble Fe, ICP, 2017.02 (%) Acid Soluble Fe, ICP, 2017.02 (%) Acid Soluble Pb, ICP (ppm) Acid Soluble Mn, ICP, test portion 9 Acid Soluble Mn, ICP, test portion in Acid Soluble	Acid Soluble Fe, ICP, test portion inorganic 965.09 (%) Acid Soluble Fe, ICP, test portion inorganic 965.09 (%) Acid Soluble Fe, ICP, test portion inorganic 965.09 (%) Acid Soluble Fe, ICP, 2017.02 (%) Acid Soluble Fe, ICP, 2017.02 (%) Acid Soluble Fe, Other (%) Acid Soluble Pb, ICP (ppm) Acid Soluble Mn, ICP, test portion 972.02a (%) Acid Soluble Mn, ICP, test portion inorganic 965.09 (%) Acid Soluble Mn, ICP, test portion inorganic 965.09 (%) Acid Soluble Mn, ICP, test portion inorganic 965.09 (%)	Analyte and Method Acid Soluble Cu, ICP, 2017.02 (%) Acid Soluble Fe, ICP, test portion inorganic 965.09 (%) Acid Soluble Fe, ICP, test portion inorganic 965.09 (%) Acid Soluble Fe, ICP, test portion inorganic 965.09 (%) Acid Soluble Fe, ICP, 2017.02 (%) Acid Soluble Fe, ICP, 2017.02 (%) Acid Soluble Fe Acid Soluble Fe Acid Soluble Pb, ICP (ppm) 524 Acid Soluble Mn, ICP, test portion 972.02a (%) Acid Soluble Mn, ICP, test portion inorganic 965.09 (%) Acid Soluble Mn, ICP, test portion inorganic 965.09 (%) Acid Soluble Mn, ICP, test portion inorganic 965.09 (%) Acid Soluble Mn, ICP, test portion inorganic 965.09 (%) Acid Soluble Mn, ICP, test portion inorganic 965.09 (%) Acid Soluble Mn, ICP, test portion inorganic 965.09 (%) Acid Soluble Mn, ICP, test portion inorganic 965.09 (%)	Analyte and Method Acid Soluble Cu, ICP, 2017 Acid Soluble Fe, ICP, test portion inorganic 965.09 (%) Acid Soluble Fe, ICP, test portion inorganic 965.09 (%) Acid Soluble Fe, ICP, test portion inorganic 965.09 (%) Acid Soluble Fe, ICP, test portion inorganic 965.09 (%) Acid Soluble Fe, ICP, 2017 Acid Soluble Fe, ICP, 2017 Acid Soluble Fe, ICP, 2017.02 (%) Acid Soluble Fe, Other (%) Acid Soluble Fe, Other (%) Acid Soluble Mn, ICP, test portion inorganic 965.09 (%) Acid Soluble Mn, ICP, test portion in Acid Soluble Mn, ICP, 2017	Analyte and Method Lab Num Result1 Result2 Acid Soluble Cu, ICP, 2017.02 (%) 472 <0.01	Analyte and Method Lab Num Result 1 Result 2 Lab Value Acid Soluble Cu, ICP, 2017-02 (%) Acid Soluble Cu, ICP, 2017-02 (%) 472 <0.01	Analyte and Method Lab Num Result 2 Result 2 Lab Value Z score Acid Soluble Cu, ICP, 2017.02 (%) Acid Soluble Fe, ICP, 2017.02 (%) Acid Soluble Fe, ICP, test portion inorganic 965.09 (%) 354 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0	Analyte and Method	Acid Soluble Fe, ICP, test portion inorganic 965.09 (%) Acid Soluble Fe, ICP, test portion inorganic 965.09 (%) Acid Soluble Fe, ICP, test portion inorganic 965.09 (%) Acid Soluble Fe, ICP, test portion inorganic 965.09 (%) Acid Soluble Fe, ICP, test portion inorganic 965.09 (%) Acid Soluble Fe, ICP, test portion inorganic 965.09 (%) Acid Soluble Fe, ICP, test portion inorganic 965.09 (%) Acid Soluble Fe, ICP, test portion inorganic 965.09 (%) Acid Soluble Fe, ICP, test portion inorganic 965.09 (%) Acid Soluble Fe, ICP, 2017.02 (%) Acid Soluble Fe, ICP, 2017.02 (%) Acid Soluble Fe, ICP, 2017.02 (%) Acid Soluble Fe, ICP (ppm) Acid Soluble Fe, ICP (ppm) Acid Soluble Fe, ICP (ppm) Acid Soluble Mn, ICP, test portion 972.02a (%) Acid Soluble Mn, ICP, test portion inorganic 965.09 (%) Acid Soluble Mn, ICP, test portion inorganic 965.09 (%) Acid Soluble Mn, ICP, test portion inorganic 965.09 (%) Acid Soluble Mn, ICP, test portion inorganic 965.09 (%) Acid Soluble Mn, ICP, test portion inorganic 965.09 (%) Acid Soluble Mn, ICP, test portion inorganic 965.09 (%) Acid Soluble Mn, ICP, test portion inorganic 965.09 (%) Acid Soluble Mn, ICP, 2017.02 (%) Acid Sol	Analyte and Method			

Issue Date: 10/31/2025		All Labs Trueness by Method					25	0911 (Urea, Regular Scheme)				
Code								Popu	es			
	Analyte and Method			Result1	Result2	Lab Value	Z score	Robust Mean	Robust StDev	# Obs	Flag	
		Acid So	luble M	lo, ICP (¡	ppm)							
289.30	Acid Soluble Mo, ICP (ppm)		524	0.2095	0.3284	0.269						
		Acid So	oluble N	li, ICP (p	pm)							
291.30	Acid Soluble Ni, ICP (ppm)		524	0.2971	0.3813	0.3392						
		Acid So	oluble S	e, ICP (p	pm)							
301.30	Acid Soluble Se, ICP (ppm)		524	0.0089	0.0043	0.0066						
		Soc	dium, O	ther (%)								
311.99	Sodium, Other (%)		354	0.03	0.04	0.035						
	Acid	Soluble Zn, ICP,	test po	rtion in	organic	965.09 ((%)					
321.30	Acid Soluble Zn, ICP, test portion inor	ganic 965.09 (%)	354	<0.01	<0.01	<0.01					6	
321.30	Acid Soluble Zn, ICP, test portion inor	ganic 965.09 (%)	371	0.01	0.01	0.01						
		Acid Soluk	ole Zn, I	CP, 2017	7.02 (%)							
321.33	Acid Soluble Zn, ICP, 2017.02 (%)		472	<0.01	<0.01	<0.01					6	

Lab Data: Value is the average of 2 reported lab results. † or ‡ beside Lab Value denotes the value exceeds the investigational allowance (IA) around the analyte mean. † denotes value is less than IA and ‡ denotes value is greater than IA. This is noted for guaranteed analytes with # of observations >= 6. Method code and analyte name are shown in green for guaranteed analytes along with guaranteed concentration.

Statistical parameters of the population: Robust statistics was used to determine mean, %RSD, and range if number of observations >=6 (blue background). Classical statistics was used if number of observations = 3, 4, or 5 (pink background). The number of observations in parantheses is the number of values used in the statistical calculation. Footnote on flags below identifies flag numberd where data was rejected and the reason why.

Z scores: Red = Z value >3 or <-3 (action required), Orange = Z value between 2 and 3 or -2 and -3 (warning), Green = Z value between -2 and 2 (pass). Z values are determined for data populations with number of observation >= 3 for values that are not an analytical limit or 0. Color ratings shown for number of observations >=6.

Flags: Flag number denotes whether or not Lab Value was used in the population to determine statistical parameters. No flag number indicates data was used, 1 = data rejected for dups too far apart, 2 = rejected as extreme outier, 3 = rejected for both dups too far apart and extreme outlier, 4 = removed after manual inspection, 5 = rejected due to zero(s) submitted, 6 = rejected due to analytical limit submitted (eg "<0.1").

Other Method: Unspecified methods are shown without color ratings on Z-score.

Appendix

Content Description of Analyte and Method All Tests Report

The All Tests reports have results listed for every lab grouped by Analyte or by Method with data in each group sorted by lab value. The reports are helpful to see where your lab result fell within the whole set of data for the Analyte or Method by identifying your results by your lab number. Data on the right side of the report shows the mean, standard deviation, and number of observations (obs) used in the analysis of each group. An observation was a lab value for a test which was the average of reported duplicate results. Determination of mean and standard deviation followed protocols in ISO 13528:2015(E) (Statistical methods for use in proficiency testing by interlaboratory comparison) where robust statistics was used to determine the mean and standard deviation for 6 or more observations. Robust statistics has an advantage of removing undesired influence outlying data can have on the mean and standard deviation without removing data from the statistical analysis. Robust statistics is only appropriate for use on data sets with 6 or more observations. For data sets with 3, 4, or 5 observations, classical calculation of mean and standard deviation was performed. Z scores for data sets with a small number of observations are given less importance as indicated by no color coding of Z score with less than 6 observations. No Z scores were determined for 1 or 2 observations.

Before determining mean and standard deviation for a set of data, data was removed from statistical analysis for various reasons. Mandel statistical analysis was used to identify and remove extreme outliers and lab values from duplicate results that were too far apart (ISO 5725-2:1994, Accuracy (trueness and precision) of measurement methods and results – Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method.). Any individual result report of zero or less than a limit had lab value removed from analysis. The lab values removed from analysis are denoted with numerical flags on the far right-hand side of the report. Z scores are reported for data removed due to extreme outlier or duplicates too far apart even though data was not used in the determination of mean and standard deviation. However, Z scores are not reported for results reported as 0 or less than a limit. Also, any submission of just one lab result is removed for consideration in statistical analysis and presentation on reports.

The American Association of Plant Food Control Officials (AAPFCO) recommends limits around a nutrient guarantee that should initiate an investigation if observed nutrient concentration falls outside of the limits. These limits are referred to as Investigational Allowances (IAs). Lab Values that fall outside of the IA limits around the analyte mean are denoted with † (below limit) or ‡ (above limit). These same symbols are also used to denote Lab Values beyond IA limits on Laboratory Report Cards.